Expert Evaluation of the Significance of Criteria for Electric Vehicle Deployment: A Case Study of Lithuania
This study presents the hierarchical structure of 50 sub-criteria divided into 7 main criteria for the assessment of electric vehicle (EV) deployment. Two options, Average Rank Transformations and Analytic Hierarchy Process methods, were applied in determining the local weights of the sub-criteria....
Gespeichert in:
Veröffentlicht in: | Smart cities (Basel) 2024-08, Vol.7 (4), p.2208-2231 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents the hierarchical structure of 50 sub-criteria divided into 7 main criteria for the assessment of electric vehicle (EV) deployment. Two options, Average Rank Transformations and Analytic Hierarchy Process methods, were applied in determining the local weights of the sub-criteria. The sufficient compatibility of expert opinions was accomplished using the averages of the ranks of the main criteria and sub-criteria as the result of solving the problem. The averages of the local weights were calculated employing three Multiple Criteria Decision-Making methods that increased the reliability of the research results. Based on this, the global weights and priorities of the sub-criteria were evaluated. The experts suppose that EV deployment at the national level is mainly affected by the higher cost of manufacturing and purchasing EVs, the application of financial incentives for purchasing EVs, the lack of exhausted gasses, the installation of fast charging points, and the absence of infrastructure in the five largest cities nationwide. The obtained results demonstrate that out of 50 sub-criteria, the cumulative global weight of the 10 most important sub-criteria (mainly based in economics) amounts to more than 35%, whereas that of the 22 most important sub-criteria have a weight above the average (0.2), reaching approximately 65%. The findings can be put into practice by state decision makers of EV deployment. |
---|---|
ISSN: | 2624-6511 2624-6511 |
DOI: | 10.3390/smartcities7040087 |