Robust Leader–Follower Formation Control Using Neural Adaptive Prescribed Performance Strategies

This paper introduces a novel leader–follower formation control strategy for autonomous vehicles, aimed at achieving precise trajectory tracking in uncertain environments. The approach is based on a graph guidance law that calculates the desired yaw angles and velocities for follower vehicles using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-10, Vol.12 (20), p.3259
Hauptverfasser: Xie, Fengxi, Liang, Guozhen, Chien, Ying-Ren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a novel leader–follower formation control strategy for autonomous vehicles, aimed at achieving precise trajectory tracking in uncertain environments. The approach is based on a graph guidance law that calculates the desired yaw angles and velocities for follower vehicles using the leader’s reference trajectory, improving system stability and predictability. A key innovation is the development of a Neural Adaptive Prescribed Performance Controller (NA-PPC), which incorporates a Radial Basis Function Neural Network (RBFNN) to approximate nonlinear system dynamics and enhances disturbance estimation accuracy. The proposed method enables high-precision trajectory tracking and formation maintenance under random disturbances, which are vital for autonomous vehicle logistics and detection technologies. Leveraging a graph-based guidance law reduces control complexity and improves robustness against external disturbances. The inclusion of second-order filters and adaptive RBFNNs further enhances nonlinear error handling, improving control performance, stability, and accuracy. The integration of guidance laws, leader–follower control strategies, backstepping techniques, and RBFNNs creates a robust formation control system capable of maintaining performance under dynamic conditions. Comprehensive computer simulations validate the effectiveness of this controller, highlighting its potential to advance autonomous vehicle formation control.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12203259