Design of a Distributed Personal Information Access Control Scheme for Secure Integrated Payment in NFC

At the center of core technologies for a future cyber world, such as Internet of Things (IoT) or big data, is a context-rich system that offers services by using situational information. The field where context-rich systems were first introduced is near-field communication (NFC)-based electronic pay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2015-06, Vol.7 (2), p.935-948
Hauptverfasser: Kang, Jungho, Park, Jong Hyuk, Suk, Sangkee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At the center of core technologies for a future cyber world, such as Internet of Things (IoT) or big data, is a context-rich system that offers services by using situational information. The field where context-rich systems were first introduced is near-field communication (NFC)-based electronic payments. Near-field Communication (NFC) integrated payment services collect the payment information of the credit card and the location information to generate patterns in the user's consumption or movement through big data technology. Based on such pattern information, tailored services, such as advertisement, are offered to users. However, there is difficulty in controlling access to personal information, as there is a collaborative relationship focused on the trusted service manager (TSM) that is close knit to shared personal information. Moreover, in the case of Hadoop, among the many big data analytical technologies, it offers access control functions, but not a way to authorize the processing of personal information, making it impossible to grant authority between service providers to process information. As such, this paper proposes a key generation and distribution method, as well as a secure communication protocol. The analysis has shown that the efficiency was greater for security and performance compared to relation works.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym7020935