When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of...
Gespeichert in:
Veröffentlicht in: | Animal microbiome 2023-12, Vol.5 (1), p.66-66, Article 66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective. |
---|---|
ISSN: | 2524-4671 2524-4671 |
DOI: | 10.1186/s42523-023-00285-1 |