A Class of Multi-Component Non-Isospectral TD Hierarchies and Their Bi-Hamiltonian Structures

By using the classical Lie algebra, the stationary zero curvature equation, and the Lenard recursion equations, we obtain the non-isospectral TD hierarchy. Two kinds of expanding higher-dimensional Lie algebras are presented by extending the classical Lie algebra. By solving the expanded non-isospec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2024-05, Vol.13 (5), p.282
Hauptverfasser: Yu, Jianduo, Wang, Haifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using the classical Lie algebra, the stationary zero curvature equation, and the Lenard recursion equations, we obtain the non-isospectral TD hierarchy. Two kinds of expanding higher-dimensional Lie algebras are presented by extending the classical Lie algebra. By solving the expanded non-isospectral zero curvature equations, the multi-component non-isospectral TD hierarchies are derived. The Hamiltonian structure for one of them is obtained by using the trace identity.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms13050282