From Fish Eggs to Fish Name: Caviar Species Discrimination by COIBar-RFLP, an Efficient Molecular Approach to Detect Fraud in the Caviar Trade

The demand for caviar is growing as is its price on the market. Due to the decline of true caviar production from sturgeons, eggs from other fish species and other animals have been used as substitutes for caviar. The labels on these products should indicate the species from which the eggs were deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2019-07, Vol.24 (13), p.2468
Hauptverfasser: Pappalardo, Anna Maria, Petraccioli, Agnese, Capriglione, Teresa, Ferrito, Venera
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The demand for caviar is growing as is its price on the market. Due to the decline of true caviar production from sturgeons, eggs from other fish species and other animals have been used as substitutes for caviar. The labels on these products should indicate the species from which the eggs were derived, but the label can be misleading in some cases. In this context, species identification using DNA analysis is crucial for traceability and authentication of caviar products. In this work, we applied the COIBar-RFLP procedure to obtain species-specific endonuclease restriction patterns useful to discriminate "caviar" species. The tested caviar products were identified as originating from eight species: , , , , , , and . The results demonstrated that 14% of the caviar products examined have a label that does not indicate the species from which the eggs were originated. The I restriction enzyme produced specific profiles discriminating the eight species, confirming that the COIBar-RFLP is a useful approach for routine screening of seafood products due to its ease and rapid execution, as the results of screening can be obtained within 7 h, by-passing the need for sequencing.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24132468