ColdZyme® protects airway epithelia from infection with BA.4/5
Vaccines against SARS-CoV-2 protect from critical or severe pathogenesis also against new variants of concern (VOCs) such as BA.4 and BA.5, but immediate interventions to avoid viral transmission and subsequent inflammatory reactions are needed. Here we applied the ColdZyme® medical device mouth spr...
Gespeichert in:
Veröffentlicht in: | Respiratory research 2022-10, Vol.23 (1), p.300-300, Article 300 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vaccines against SARS-CoV-2 protect from critical or severe pathogenesis also against new variants of concern (VOCs) such as BA.4 and BA.5, but immediate interventions to avoid viral transmission and subsequent inflammatory reactions are needed. Here we applied the ColdZyme® medical device mouth spray to fully differentiated, polarized human epithelium cultured at an air-liquid interphase (ALI). We found using VOCs BA.1 and BA.4/5 that this device effectively blocked respiratory tissue infection. While infection with these VOCs resulted in intracellular complement activation, thus enhanced inflammation, and drop of transepithelial resistance, these phenomena were prevented by a single administration of this medical device. Thus, ColdZyme® mouth spray significantly shields epithelial integrity, hinders virus infection and blocks in a secondary effect intrinsic complement activation within airway cultures also in terms of the highly contagious VOCs BA.4/5. Crucially, our in vitro data suggest that ColdZyme® mouth spray may have an impact to protect against SARS-CoV-2 transmission, also in case of the Omicron BA.1, BA.4 and BA.5 variants. |
---|---|
ISSN: | 1465-993X 1465-9921 1465-993X 1465-9921 |
DOI: | 10.1186/s12931-022-02223-2 |