A multi-MeV alpha particle source via proton-boron fusion driven by a 10-GW tabletop laser
Nuclear fusion between protons and boron-11 nuclei has undergone a revival of interest thanks to the rapid progress in pulsed laser technology. Potential applications of such reaction range from controlled nuclear fusion to radiobiology and cancer therapy. A laser-driven fusion approach consists in...
Gespeichert in:
Veröffentlicht in: | Communications physics 2023-02, Vol.6 (1), p.27-8, Article 27 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuclear fusion between protons and boron-11 nuclei has undergone a revival of interest thanks to the rapid progress in pulsed laser technology. Potential applications of such reaction range from controlled nuclear fusion to radiobiology and cancer therapy. A laser-driven fusion approach consists in the interaction of high-power, high-intensity pulses with H- and B-rich targets. We report on an experiment exploiting proton-boron fusion in CN-BN targets to obtain high-energy alpha particle beams (up to 5 MeV) using a very compact approach and a tabletop laser system with a peak power of ~10 GW, which can operate at high-repetition rate (up to 1 kHz). The secondary resonance in the cross section of proton-boron fusion (~150 keV in the center-of-mass frame) is exploited using a laser-based approach. The generated alpha particles are characterized in terms of energy, flux, and angular distribution using solid-state nuclear-track detectors, demonstrating a flux of ~10
5
particles per second at 10 Hz, and ~10
6
per second at 1 kHz. Hydrodynamic and particle-in-cell numerical simulations support our experimental findings. Potential impact of our approach on future spread of ultra-compact, multi-MeV alpha particle sources driven by moderate intensity (10
16
-10
17
W/cm
2
) laser pulses is anticipated.
Revived interest in proton-boron fusion has been fuelled by new laser matter interaction schemes with several possible applications. The authors report on a tabletop laser experiment that observes proton-boron fusion with an emphasis on the secondary cross-section peak around 150 keV. |
---|---|
ISSN: | 2399-3650 2399-3650 |
DOI: | 10.1038/s42005-023-01135-x |