Discovery, Validation, and Target Prediction of Antibacterial and Antidiabetic Components of Archidendron clypearia Based on a Combination of Multiple Analytical Methods

( ), a Fabaceae family member, is widely used as an anti-inflammatory herbal medicine; however, its antibacterial and antidiabetic properties have not been extensively investigated. This study aimed to systematically analyze the antibacterial and antidiabetic components of by utilizing a combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-01, Vol.28 (3), p.1329
Hauptverfasser: Ji, Wenduo, Gu, Lixia, Zou, Xuezhe, Li, Zhichao, Xu, Xiaohong, Wu, Jialin, Zhang, Shu, Deng, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:( ), a Fabaceae family member, is widely used as an anti-inflammatory herbal medicine; however, its antibacterial and antidiabetic properties have not been extensively investigated. This study aimed to systematically analyze the antibacterial and antidiabetic components of by utilizing a combination of analytical methods. First, ten different polarity extracts were analyzed through ultra-performance liquid chromatography (UPLC), and their antibacterial and antidiabetic activities were evaluated. Then the spectrum-effect relationship between the biological activity and UPLC chromatograms was analyzed by partial least squares regression and gray relational analysis, followed by corresponding validation using isolated components. Finally, network pharmacology and molecular docking were implemented to predict the main antibacterial target components of and the enzyme inhibition active sites of α-amylase and α-glucosidase. P15, P16, and P20 were found to be the antibacterial and antidiabetic active components. The inhibitory effect of 7-O-galloyltricetiflavan (P15) on six bacterial species may be mediated through the lipid and atherosclerosis pathway, prostate cancer, adherens junctions, and targets such as SRC, MAPK1, and AKT1. The molecular docking results revealed that 7-O-galloyltricetiflavan and 7,4'-di-O-galloyltricetiflavan (P16/P20) can bind to α-amylase and α-glucosidase pockets with binding energies lower than -6 kcal/mol. Our study provides guidance for the development of antibacterial and antidiabetic products based on and can be used as a reference for the evaluation of bioactivity of other herbs.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28031329