Leakage detection in water distribution networks using machine-learning strategies

This work proposes a reliable leakage detection methodology for water distribution networks (WDNs) using machine-learning strategies. Our solution aims at detecting leakage in WDNs using efficient machine-learning strategies. We analyze pressure measurements from pumps in district metered areas (DMA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science & technology. Water supply 2023-03, Vol.23 (3), p.1115-1126
Hauptverfasser: Sousa, Diego Perdigão, Du, Rong, Mairton Barros da Silva Jr, José, Cavalcante, Charles Casimiro, Fischione, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a reliable leakage detection methodology for water distribution networks (WDNs) using machine-learning strategies. Our solution aims at detecting leakage in WDNs using efficient machine-learning strategies. We analyze pressure measurements from pumps in district metered areas (DMAs) in Stockholm, Sweden, where we consider a residential DMA of the water distribution network. Our proposed methodology uses learning strategies from unsupervised learning (K-means and cluster validation techniques), and supervised learning (learning vector quantization algorithms). The learning strategies we propose have low complexity, and the numerical experiments show the potential of using machine-learning strategies in leakage detection for monitored WDNs. Specifically, our experiments show that the proposed learning strategies are able to obtain correct classification rates up to 93.98%.
ISSN:1606-9749
1607-0798
1607-0798
DOI:10.2166/ws.2023.054