Application of AC superimposed DC waveforms to bismuth electrorefining

Electrorefining in molten salts is used for purifying actinides. Optimizing electrorefining is key to minimizing processing time and radiological waste. One possible way of improving electrorefining efficiency is using an AC superimposed DC waveform. This waveform has demonstrated potential benefits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2024-04, Vol.56 (4), p.1339-1346
Hauptverfasser: Chipman, Greg, Johnson, Bryant, Rappleye, Devin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrorefining in molten salts is used for purifying actinides. Optimizing electrorefining is key to minimizing processing time and radiological waste. One possible way of improving electrorefining efficiency is using an AC superimposed DC waveform. This waveform has demonstrated potential benefits in aqueous solutions but has never been utilized in a molten metal, molten salt application. This work investigates the effects of using an AC superimposed DC waveform on molten bismuth electrorefining in a molten LiCl–KCl–CaCl2 eutectic. Bismuth has been identified as a potential surrogate for plutonium electrorefining and a potential cathode in electrorefining used nuclear fuel (UNF). All electrorefining runs resulted in a high purity cathode ring and high yield with exception of the run using a low-frequency, high-amplitude superimposed AC waveform, which experienced some contamination and a lower yield. The other three AC superimposed DC runs experienced an average yield 6.7 % higher than the average yield of the DC runs. The electrorefining run using the high-frequency, high-amplitude superimposed AC signal had the highest yield. It is recommended in future studies to investigate the statistical variability of electrorefining yield and current efficiency and the impact of AC superimposed DC waveforms on solidified bismuth anodes.
ISSN:1738-5733
DOI:10.1016/j.net.2023.11.038