Understanding the light induced hydrophilicity of metal-oxide thin films

Photocatalytic effects resulting in water splitting, reduction of carbon dioxide to fuels using solar energy, decomposition of organic compounds, and light-induced hydrophilicity observed on surfaces of various metal oxides (MOx), all rely on the same basic physical mechanisms, and have attracted co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-01, Vol.15 (1), p.124-11, Article 124
Hauptverfasser: Deshpande, Rucha Anil, Navne, Jesper, Adelmark, Mathias Vadmand, Shkondin, Evgeniy, Crovetto, Andrea, Hansen, Ole, Bachmann, Julien, Taboryski, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photocatalytic effects resulting in water splitting, reduction of carbon dioxide to fuels using solar energy, decomposition of organic compounds, and light-induced hydrophilicity observed on surfaces of various metal oxides (MOx), all rely on the same basic physical mechanisms, and have attracted considerable interest over the past decades. TiO 2 and ZnO, two natively n-type doped wide bandgap semiconductors exhibit the effects mentioned above. In this study we propose a model for the photo-induced hydrophilicity in MOx films, and we test the model for TiO 2 /Si and ZnO/Si heterojunctions. Experimentally, we employ a wet exposure technique whereby the MOx surface is exposed to UV light while a water droplet is sitting on the surface, which allows for a continuous recording of contact angles during illumination. The proposed model and the experimental techniques allow a determination of minority carrier diffusion lengths by contact angle measurements and suggest design rules for materials exhibiting photocatalytic hydrophilicity. We expect that this methodology can be extended to improve our physical understanding of other photocatalytic surface effects. Light-induced hydrophilicity of TiO2 and ZnO surfaces rely on the same physics and involve excitation of electron-hole pairs. Here, the authors propose and test a model for the photowetting of TiO2 and ZnO thin films. The results suggest design rules for materials exhibiting photocatalytic wetting.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-44603-2