Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells

Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-08, Vol.25 (16), p.8695
Hauptverfasser: Pavlova, Sophia V, Shulgina, Angelina E, Zakian, Suren M, Dementyeva, Elena V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allows for the unraveling of different biological tasks. In this study, introducing a mutation with CRISPR/Cas9 into induced pluripotent stem cells (iPSCs) of a healthy donor and the directed differentiation of the isogenic iPSC lines into cardiomyocytes were used to assess the pathogenicity of a variant of unknown significance, p.M659I (c.1977G > A) in , which was found previously in an HCM patient. Using two single-stranded donor oligonucleotides with and without the p.M659I (c.1977G > A) mutation, together with CRISPR/Cas9, an iPSC line heterozygous at the p.M659I (c.1977G > A) variant in was generated. No CRISPR/Cas9 off-target activity was observed. The iPSC line with the introduced p.M659I (c.1977G > A) mutation in retained its pluripotent state and normal karyotype. Compared to the isogenic control, cardiomyocytes derived from the iPSCs with the introduced p.M659I (c.1977G > A) mutation in recapitulated known HCM features: enlarged size, elevated diastolic calcium level, changes in the expression of HCM-related genes, and disrupted energy metabolism. These findings indicate the pathogenicity of the variant.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25168695