Estimation of Number of Flight Using Particle Swarm Optimization and Artificial Neural Network

The number of flight (NF) is one of the key factors for the administration of the airport to evaluate the apron capacity and airline companies to fix the size of the flight. This paper aims to estimate the monthly NF by performing particle swarm optimization (PSO) and artificial neural network (ANN)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in distributed computing and artificial intelligence journal 2019-01, Vol.8 (3), p.27-33
Hauptverfasser: Pekel Özmen, Ebru, Pekel, Engin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of flight (NF) is one of the key factors for the administration of the airport to evaluate the apron capacity and airline companies to fix the size of the flight. This paper aims to estimate the monthly NF by performing particle swarm optimization (PSO) and artificial neural network (ANN). Performed PSO-ANN algorithm aims to minimize the proposed evaluation criterion in the training stage. PSO-ANN based on the proposed evaluation criterion offers satisfying fitness values with respect to correlation coefficient and mean absolute percentage error in the training and testing stage.
ISSN:2255-2863
2255-2863
DOI:10.14201/ADCAIJ2019832733