Weyl-like points from band inversions of spin-polarised surface states in NbGeSb

Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-12, Vol.10 (1), p.5485-8, Article 5485
Hauptverfasser: Marković, I., Hooley, C. A., Clark, O. J., Mazzola, F., Watson, M. D., Riley, J. M., Volckaert, K., Underwood, K., Dyer, M. S., Murgatroyd, P. A. E., Murphy, K. J., Fèvre, P. Le, Bertran, F., Fujii, J., Vobornik, I., Wu, S., Okuda, T., Alaria, J., King, P. D. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states. Bulk band inversions in solids may unlock topological surface phenomena and symmetry-protected states. Here, the authors generate a surface state band inversion in the nonsymmorphic semimetal NbGeSb, leading to protected crossing points in the resulting spin-orbital entangled surface band structure.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13464-z