Air-Stable Efficient Nickel Catalyst for Hydrogenation of Organic Compounds
A series of composites containing nanoparticles of NiO (from 1 to 10% by weight per Ni), deposited on NORIT charcoal, was prepared by the decomposition of the Ni0 complex Ni(cod)2 (cod = cis,cis-1,5-cyclooctadiene). Ni content in the composites was set by loading the appropriate quantities of the Ni...
Gespeichert in:
Veröffentlicht in: | Catalysts 2023-04, Vol.13 (4), p.706 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of composites containing nanoparticles of NiO (from 1 to 10% by weight per Ni), deposited on NORIT charcoal, was prepared by the decomposition of the Ni0 complex Ni(cod)2 (cod = cis,cis-1,5-cyclooctadiene). Ni content in the composites was set by loading the appropriate quantities of the Ni(cod)2 precursor. The catalytic activity of the composites was associated with the in situ generation of active sites due to a reduction in NiO, hence the composites could be stored in air without a loss in their catalytic performance. The composites were analyzed by powder XRD, TEM, XPS, and adsorption methods. The hydrogenation of quinoline was used as a reference reaction for studies of the influence of temperature, P(H2), catalyst loading on the product yield, and for the selection of the composite possessing the highest performance. It was found that 3% Ni loading was the most optimal. This composite was used as an efficient catalyst for the hydrogenation of compounds with ethylene and acetylene bonds, nitro- and keto- groups as well as a series of substituted quinolines and analogs. The studied composites can be proposed as air-stable and efficient catalysts for the hydrogenation of a wide range of organic compounds. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal13040706 |