In Situ Analysis of the Phase Transformation Kinetics in the β-Water-Quenched Ti-5Al-5Mo-5V-3Cr-1Zr Alloy during Ageing after Fast Heating

Thermal treatments are the main route to achieve improvements in mechanical properties of β-metastable titanium alloys developed for structural applications in automotive and aerospace industries. Therefore, it is of vital importance to determine phase transformation kinetics and mechanisms of nucle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum beam science 2020-03, Vol.4 (1), p.12
Hauptverfasser: Paiotti Marcondes Guimarães, Rafael, Callegari, Bruna, Warchomicka, Fernando, Aristizabal, Katherine, Soldera, Flavio, Mücklich, Frank, Cavalcanti Pinto, Haroldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal treatments are the main route to achieve improvements in mechanical properties of β-metastable titanium alloys developed for structural applications in automotive and aerospace industries. Therefore, it is of vital importance to determine phase transformation kinetics and mechanisms of nucleation and precipitation during heat treatment of these alloys. In this context, the present paper focuses on the assessment of solid-state transformations in a β-water-quenched Ti-5Al-5Mo-5V-3Cr-1Zr alloy during the early stages of ageing treatment at 500 °C. In situ tracking of transformations was performed using high-energy synchrotron X-ray diffraction. The transformation sequence β + ω → α + α”iso + β is proposed to take place during this stage. Results show that isothermal α” phase precipitates from ω and from spinodal decomposition domains of the β phase, whereas α nucleates from ω, β and also from α” with different morphologies. Isothermal α” is considered to be the regulator of transformation kinetics. Hardness measurements confirm the presence of ω, although this phase was not detected by X-ray diffraction during the in situ treatment.
ISSN:2412-382X
2412-382X
DOI:10.3390/qubs4010012