Seismic Performance of Lightweight Concrete Structures

Concrete structures are prone to earthquake due to mass of the structures. The primary use of structural lightweight concrete (SLWC) is to reduce the dead load of a concrete structure, which allows the structural designer to reduce the size of the structural members like beam, column, and footings w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Civil Engineering 2018-01, Vol.2018 (2018), p.1-6
Hauptverfasser: Vandanapu, Swamy Nadh, Krishnamurthy, Muthumani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concrete structures are prone to earthquake due to mass of the structures. The primary use of structural lightweight concrete (SLWC) is to reduce the dead load of a concrete structure, which allows the structural designer to reduce the size of the structural members like beam, column, and footings which results in reduction of earthquake forces on the structure. This paper attempts to predict the seismic response of a six-storied reinforced concrete frame with the use of lightweight concrete. A well-designed six-storey example is taken for study. The structure is modelled with standard software, and analysis is carried out with normal weight and lightweight concrete. Bending moments and shear forces are considered for both NWC and LWC, and it is observed that bending moments and shear forces are reduced to 15 and 20 percent, respectively, in LWC. The density difference observed was 28% lower when compared NWC to LWC. Assuming that the section and reinforcements are not revised due to use of LWC, one can expect large margin over and above MCE (maximum considered earthquake; IS 1893-2016), which is a desirable seismic resistance feature in important structures.
ISSN:1687-8086
1687-8094
DOI:10.1155/2018/2105784