Alternatively mechanistic insights into acetylation in p53-mediated transcriptional regulation of cancer cell-intrinsic PD-1
Since the recent discovery of cancer cell-intrinsic programmed cell death protein-1 (PD-1), the mechanisms that manipulate PD-1 functions in tumor development beyond its immune checkpoint roles have become attractive research topics in oncology. Our previous study validated that PD-1 exists in lung...
Gespeichert in:
Veröffentlicht in: | Fundamental research (Beijing) 2023-07, Vol.3 (4), p.647-654 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the recent discovery of cancer cell-intrinsic programmed cell death protein-1 (PD-1), the mechanisms that manipulate PD-1 functions in tumor development beyond its immune checkpoint roles have become attractive research topics in oncology. Our previous study validated that PD-1 exists in lung cancer cells and is directly transactivated by p53 in a DNA-binding domain (DBD) acetylation-dependent manner. Here, we report that the carboxyl-terminal domain (CTD) of p53 likewise participates in PD-1 transcriptional regulation in cancer cells under different regulatory mechanisms. By mutating the lysine residues within the CTD to mimic either acetylation-deficient or fully acetylated status, we proved that acetylated CTD dramatically impeded p53-mediated transactivation of PD-1. Furthermore, we identified bromodomain-containing protein 4 (BRD4) as a transcriptional coactivator of p53 that facilitates p53-mediated PD-1 transcription. Mechanistically, BRD4 specifically bound to the unacetylated CTD of p53, while CTD acetylation almost completely destroyed the BRD4-p53 interaction and thus led to compromised PD-1 expression. Collectively, this study unveils an alternative mechanism of p53 acetylation-directed PD-1 transcriptional regulation, which would broaden our current understanding of the molecular regulatory network of cancer cell-intrinsic PD-1.
[Display omitted] |
---|---|
ISSN: | 2667-3258 2096-9457 2667-3258 |
DOI: | 10.1016/j.fmre.2022.03.012 |