Importance of beam-matching between truebeam stx and novalis tx in pre-treatment quality assurance using portal dosimetry

Flexibility and efficiency in a radiotherapy department with different linear accelerators (linacs) can be improved if they are dosimetrically equivalent, and there is no need of plan or patient-specific quality assurance (PSQA) modification. From 2012 to 2017, our institution purchased three Novali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical physics 2021-07, Vol.46 (3), p.211-220
Hauptverfasser: Rojas-López, José, Venencia, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexibility and efficiency in a radiotherapy department with different linear accelerators (linacs) can be improved if they are dosimetrically equivalent, and there is no need of plan or patient-specific quality assurance (PSQA) modification. From 2012 to 2017, our institution purchased three Novalis Tx and one TrueBeam STx beam-matched accelerators with the same high-resolution multileaf collimator (MLC). They are matched taking as reference dosimetric data from Novalis Tx SN-5479. We showed the importance of beam-matched dosimetric units by the use of electronic portal image device (EPID) and Delta4 PSQA. It was able to treat patients on a different machine than the machine used for PSQA. Depth dose, beam profiles, output factors, dosimetric leaf gap, and MLC transmission were compared for all energies and linacs. PSQA in all linacs for 30 volumetric-modulated arc therapy plans was also compared. Prostate, breast, and head-and-neck cases were selected to consider low, middle, and high plan complexity, respectively. The comparisons were evaluated using EPID and Delta4 phantom. Dosimetric differences between the three Novalis Tx and TrueBeam STx in all energies were lower than 1%. The only significant difference was observed in Novalis EPID in middle complexity when the criterion was tighter in distance. This result could be related with the nonsymmetric dose delivery of semi arcs. In all other cases, there were no differences in two different EPID evaluations. However, TrueBeam EPID values were slightly higher than Novalis EPID values. This could be associated with the high-resolution novel diode detector TrueBeam EPID. The dosimetric data indicated that the Novalis Tx and TrueBeam STx are equivalent. PSQA using EPID and Delta4 phantom showed that there are no dosimetric differences in any of the linacs. These results revealed the flexibility performance in PSQA by beam-matching.
ISSN:0971-6203
1998-3913
DOI:10.4103/jmp.JMP_12_21