Electromagnetic form factors in noncommutative space time

Electric and magnetic moment distributions are presenting by form factors (FF)s. Noncommutative space-time (NCST) includes an additional Lorentz index which are effecting on FFs. In this content we investigate electron-proton elastic scattering to impose the noncommutative effect on FFs and to obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2022, Vol.82 (1), p.1-10, Article 62
Hauptverfasser: Rafiei, A., Rezaei, Z., Mirjalili, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electric and magnetic moment distributions are presenting by form factors (FF)s. Noncommutative space-time (NCST) includes an additional Lorentz index which are effecting on FFs. In this content we investigate electron-proton elastic scattering to impose the noncommutative effect on FFs and to obtain their physical meaning. Two Rosenbluth and polarization methods are utilized in NCST. The second method is not affected by NCST. When we resort to polarization method, the ratio of electric form factor to magnetic form factor in NCST is identical to the one in normal space time. This indicates the priority of polarization method to measure experimentally the concerned ratio as is expecting. On the other hand, the pure NC effect makes to appear an extra ratio, denoted by R NC . If we let the variation of this quantity to cover the difference between the experimental results for Resonbluth and polarization ratio then the accepted lower limit of Λ NC as NC scale is achieved which is corresponding to 180 ∘ for the scattering angle.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-022-10010-y