The R Package sentometrics to Compute, Aggregate, and Predict with Textual Sentiment

We provide a hands-on introduction to optimized textual sentiment indexation using the R package sentometrics. Textual sentiment analysis is increasingly used to unlock the potential information value of textual data. The sentometrics package implements an intuitive framework to efficiently compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software 2021-08, Vol.99 (2)
Hauptverfasser: Ardia, David, Bluteau, Keven, Borms, Samuel, Boudt, Kris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a hands-on introduction to optimized textual sentiment indexation using the R package sentometrics. Textual sentiment analysis is increasingly used to unlock the potential information value of textual data. The sentometrics package implements an intuitive framework to efficiently compute sentiment scores of numerous texts, to aggregate the scores into multiple time series, and to use these time series to predict other variables. The workflow of the package is illustrated with a built-in corpus of news articles from two major U.S. journals to forecast the CBOE Volatility Index.
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v099.i02