Modulation of Chloride Homeostasis by Inflammatory Mediators in Dorsal Root Ganglion Neurons
Background: Chloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl− accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl− currents. The intracellular Cl− concentration can, h...
Gespeichert in:
Veröffentlicht in: | Molecular pain 2008-08, Vol.4 (1), p.32-32 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
Chloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl− accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl− currents. The intracellular Cl− concentration can, however, vary considerably between individual DRG neurons. This raises the question, whether the contribution of Cl− currents to signal generation differs between individual afferent neurons, and whether the specific Cl− levels in these neurons are subject to modulation. Based on the hypothesis that modulation of the peripheral Cl− homeostasis is involved in the generation of inflammatory hyperalgesia, we examined the effects of inflammatory mediators on intracellular Cl− concentrations and on the expression levels of Cl− transporters in rat DRG neurons.
Results:
We developed an in vitro assay for testing how inflammatory mediators influence Cl− concentration and the expression of Cl− transporters. Intact DRGs were treated with 100 ng/ml NGF, 1.8 μM ATP, 0.9 μM bradykinin, and 1.4 μM PGE2 for 1–3 hours. Two-photon fluorescence lifetime imaging with the Cl−-sensitive dye MQAE revealed an increase of the intracellular Cl− concentration within 2 hours of treatment. This effect coincided with enhanced phosphorylation of the Na+-K+−2Cl− cotransporter NKCC1, suggesting that an increased activity of that transporter caused the early rise of intracellular Cl− levels. Immunohistochemistry of NKCC1 and KCC2, the main neuronal Cl− importer and exporter, respectively, exposed an inverse regulation by the inflammatory mediators. While the NKCC1 immunosignal increased, that of KCC2 declined after 3 hours of treatment. In contrast, the mRNA levels of the two transporters did not change markedly during this time. These data demonstrate a fundamental transition in Cl− homeostasis toward a state of augmented Cl− accumulation, which is induced by a 1–3 hour treatment with inflammatory mediators.
Conclusion:
Our findings indicate that inflammatory mediators impact on Cl− homeostasis in DRG neurons. Inflammatory mediators raise intracellular Cl− levels and, hence, the driving force for depolarizing Cl− efflux. These findings corroborate current concepts for the role of Cl− regulation in the generation of inflammatory hyperalgesia and allodynia. As the intracellular Cl− concentration rises in DRG neurons, afferent signals can be boosted by excitatory Cl− currents in the presynaptic te |
---|---|
ISSN: | 1744-8069 1744-8069 |
DOI: | 10.1186/1744-8069-4-32 |