Design and Additive Manufacturing of a Continuous Servo Pneumatic Actuator

Despite an emerging interest in soft and rigid pneumatic lightweight robots, the pneumatic rotary actuators available to date either are unsuitable for servo pneumatic applications or provide a limited angular range. This study describes the functional principle, design, and manufacturing of a servo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2023-08, Vol.14 (8), p.1622
Hauptverfasser: Dämmer, Gabriel, Bauer, Hartmut, Lackner, Michael, Neumann, Rüdiger, Hildebrandt, Alexander, Major, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite an emerging interest in soft and rigid pneumatic lightweight robots, the pneumatic rotary actuators available to date either are unsuitable for servo pneumatic applications or provide a limited angular range. This study describes the functional principle, design, and manufacturing of a servo pneumatic rotary actuator that is suitable for continuous rotary motion and positioning. It contains nine radially arranged linear bellows actuators with rollers that push forward a cam profile. Proportional valves and a rotary encoder are used to control the bellows pressures in relation to the rotation angle. Introducing freely programmable servo pneumatic commutation increases versatility and allows the number of mechanical components to be reduced in comparison to state-of-the-art designs. The actuator presented is designed to be manufacturable using a combination of standard components, selective laser sintering, elastomer molding with novel multi-part cores and basic tools. Having a diameter of 110 mm and a width of 41 mm, our prototype weighs less than 500 g, produces a torque of 0.53 Nm at 1 bar pressure and a static positioning accuracy of 0.31° with no limit of angular motion. By providing a description of design, basic kinematic equations, manufacturing techniques, and a proof of concept, we enable the reader to envision and explore future applications.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14081622