Data-driven crop growth simulation on time-varying generated images using multi-conditional generative adversarial networks

Image-based crop growth modeling can substantially contribute to precision agriculture by revealing spatial crop development over time, which allows an early and location-specific estimation of relevant future plant traits, such as leaf area or biomass. A prerequisite for realistic and sharp crop im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant methods 2024-06, Vol.20 (1), p.93-28
Hauptverfasser: Drees, Lukas, Demie, Dereje T, Paul, Madhuri R, Leonhardt, Johannes, Seidel, Sabine J, Döring, Thomas F, Roscher, Ribana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image-based crop growth modeling can substantially contribute to precision agriculture by revealing spatial crop development over time, which allows an early and location-specific estimation of relevant future plant traits, such as leaf area or biomass. A prerequisite for realistic and sharp crop image generation is the integration of multiple growth-influencing conditions in a model, such as an image of an initial growth stage, the associated growth time, and further information about the field treatment. While image-based models provide more flexibility for crop growth modeling than process-based models, there is still a significant research gap in the comprehensive integration of various growth-influencing conditions. Further exploration and investigation are needed to address this gap. We present a two-stage framework consisting first of an image generation model and second of a growth estimation model, independently trained. The image generation model is a conditional Wasserstein generative adversarial network (CWGAN). In the generator of this model, conditional batch normalization (CBN) is used to integrate conditions of different types along with the input image. This allows the model to generate time-varying artificial images dependent on multiple influencing factors. These images are used by the second part of the framework for plant phenotyping by deriving plant-specific traits and comparing them with those of non-artificial (real) reference images. In addition, image quality is evaluated using multi-scale structural similarity (MS-SSIM), learned perceptual image patch similarity (LPIPS), and Fréchet inception distance (FID). During inference, the framework allows image generation for any combination of conditions used in training; we call this generation data-driven crop growth simulation. Experiments are performed on three datasets of different complexity. These datasets include the laboratory plant Arabidopsis thaliana (Arabidopsis) and crops grown under real field conditions, namely cauliflower (GrowliFlower) and crop mixtures consisting of faba bean and spring wheat (MixedCrop). In all cases, the framework allows realistic, sharp image generations with a slight loss of quality from short-term to long-term predictions. For MixedCrop grown under varying treatments (different cultivars, sowing densities), the results show that adding these treatment information increases the generation quality and phenotyping accuracy measured by the estimate
ISSN:1746-4811
1746-4811
DOI:10.1186/s13007-024-01205-3