Aligning knowledge concepts to whole slide images for precise histopathology image analysis
Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason abo...
Gespeichert in:
Veröffentlicht in: | NPJ digital medicine 2024-12, Vol.7 (1), p.383-12, Article 383 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason about histopathologic entities and factors. Here, we present a novel knowledge concept-based MIL framework, named
ConcepPath,
to fill this gap. Specifically, ConcepPath utilizes GPT-4 to induce reliable disease-specific human expert concepts from medical literature and incorporate them with a group of purely learnable concepts to extract complementary knowledge from training data. In ConcepPath, WSIs are aligned to these linguistic knowledge concepts by utilizing the pathology vision-language model as the basic building component. In the application of lung cancer subtyping, breast cancer HER2 scoring, and gastric cancer immunotherapy-sensitive subtyping tasks, ConcepPath significantly outperformed previous SOTA methods, which lacked the guidance of human expert knowledge. |
---|---|
ISSN: | 2398-6352 2398-6352 |
DOI: | 10.1038/s41746-024-01411-2 |