On complete convergence and complete moment convergence for weighted sums of ρ ∗ $\rho^{}$ -mixing random variables
Abstract Let r≥1 $r\geq1$, 1≤p0$ with 1/α+1/β=1/p $1/\alpha+1/\beta=1/p$. Let {ank,1≤k≤n,n≥1} $\{a_{nk}, 1\leq k\leq n,n\geq1\}$ be an array of constants satisfying supn≥1n−1∑k=1n|ank|αεn1/p}0. $$\sum^{\infty}_{n=1}n^{r-2}P \Biggl\{ \max_{1\leq m\leq n} \Biggl\vert \sum^{m}_{k=1}a_{nk}X_{k} \Biggr\v...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2018-06, Vol.2018 (1), p.1-16, Article 121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Let r≥1 $r\geq1$, 1≤p0$ with 1/α+1/β=1/p $1/\alpha+1/\beta=1/p$. Let {ank,1≤k≤n,n≥1} $\{a_{nk}, 1\leq k\leq n,n\geq1\}$ be an array of constants satisfying supn≥1n−1∑k=1n|ank|αεn1/p}0. $$\sum^{\infty}_{n=1}n^{r-2}P \Biggl\{ \max_{1\leq m\leq n} \Biggl\vert \sum^{m}_{k=1}a_{nk}X_{k} \Biggr\vert >\varepsilon n^{1/p} \Biggr\} < \infty,\quad \forall \varepsilon>0. $$ We also provide moment conditions under which ∑n=1∞nr−2−q/pE(max1≤m≤n|∑k=1mankXk|−εn1/p)+q0, $$\sum^{\infty}_{n=1}n^{r-2-q/p} E \Biggl( \max_{1\leq m\leq n} \Biggl\vert \sum^{m}_{k=1}a_{nk}X_{k} \Biggr\vert -\varepsilon n^{1/p} \Biggr)_{+}^{q}< \infty,\quad \forall\varepsilon>0, $$ where q>0 $q>0$. Our results improve and generalize those of Sung (Discrete Dyn. Nat. Soc. 2010:630608, 2010) and Wu et al. (Stat. Probab. Lett. 127:55–66, 2017). |
---|---|
ISSN: | 1029-242X 1029-242X |
DOI: | 10.1186/s13660-018-1710-2 |