Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy

Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-05, Vol.9 (1), p.2125-9, Article 2125
Hauptverfasser: You, Sixian, Tu, Haohua, Chaney, Eric J., Sun, Yi, Zhao, Youbo, Bower, Andrew J., Liu, Yuan-Zhi, Marjanovic, Marina, Sinha, Saurabh, Pu, Yang, Boppart, Stephen A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality and the challenge to integrate them. Here we introduce simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, a single-excitation source nonlinear imaging platform that uses a custom-designed excitation window at 1110 nm and shaped ultrafast pulses at 10 MHz to enable fast (2-orders-of-magnitude improvement), simultaneous, and efficient acquisition of autofluorescence (FAD and NADH) and second/third harmonic generation from a wide array of cellular and extracellular components (e.g., tumor cells, immune cells, vesicles, and vessels) in living tissue using only 14 mW for extended time-lapse investigations. Our work demonstrates the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and is a major enabling advance in label-free IVM. Label-free and real-time visualization of the tumor microenvironment is attractive but challenging. Here the authors present an approach for simultaneous autofluorescence functional imaging and second/third harmonic generation imaging of structural features, using a single excitation source.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04470-8