Probabilistic Forward Modeling of Galaxy Catalogs with Normalizing Flows

Evaluating the accuracy and calibration of the redshift posteriors produced by photometric redshift (photo- z ) estimators is vital for enabling precision cosmology and extragalactic astrophysics with modern wide-field photometric surveys. Evaluating photo- z posteriors on a per-galaxy basis is diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2024-08, Vol.168 (2), p.80
Hauptverfasser: Crenshaw, John Franklin, Kalmbach, J. Bryce, Gagliano, Alexander, Yan, Ziang, Connolly, Andrew J., Malz, Alex I., Schmidt, Samuel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evaluating the accuracy and calibration of the redshift posteriors produced by photometric redshift (photo- z ) estimators is vital for enabling precision cosmology and extragalactic astrophysics with modern wide-field photometric surveys. Evaluating photo- z posteriors on a per-galaxy basis is difficult, however, as real galaxies have a true redshift but not a true redshift posterior. We introduce PZFlow, a Python package for the probabilistic forward modeling of galaxy catalogs with normalizing flows. For catalogs simulated with PZFlow, there is a natural notion of “true” redshift posteriors that can be used for photo- z validation. We use PZFlow to simulate a photometric galaxy catalog where each galaxy has a redshift, noisy photometry, shape information, and a true redshift posterior. We also demonstrate the use of an ensemble of normalizing flows for photo- z estimation. We discuss how PZFlow will be used to validate the photo- z estimation pipeline of the Dark Energy Science Collaboration, and the wider applicability of PZFlow for statistical modeling of any tabular data.
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/ad54bf