Probabilistic Forward Modeling of Galaxy Catalogs with Normalizing Flows
Evaluating the accuracy and calibration of the redshift posteriors produced by photometric redshift (photo- z ) estimators is vital for enabling precision cosmology and extragalactic astrophysics with modern wide-field photometric surveys. Evaluating photo- z posteriors on a per-galaxy basis is diff...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2024-08, Vol.168 (2), p.80 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evaluating the accuracy and calibration of the redshift posteriors produced by photometric redshift (photo-
z
) estimators is vital for enabling precision cosmology and extragalactic astrophysics with modern wide-field photometric surveys. Evaluating photo-
z
posteriors on a per-galaxy basis is difficult, however, as real galaxies have a true redshift but not a true redshift posterior. We introduce PZFlow, a Python package for the probabilistic forward modeling of galaxy catalogs with normalizing flows. For catalogs simulated with PZFlow, there is a natural notion of “true” redshift posteriors that can be used for photo-
z
validation. We use PZFlow to simulate a photometric galaxy catalog where each galaxy has a redshift, noisy photometry, shape information, and a true redshift posterior. We also demonstrate the use of an ensemble of normalizing flows for photo-
z
estimation. We discuss how PZFlow will be used to validate the photo-
z
estimation pipeline of the Dark Energy Science Collaboration, and the wider applicability of PZFlow for statistical modeling of any tabular data. |
---|---|
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/ad54bf |