A hybrid cooperative navigation method for UAV swarm based on factor graph and Kalman filter
Navigation plays an important role in the task execution of the micro-unmanned aerial vehicle (UAV) swarm. The Cooperative Navigation (CN) method that fuses the observation of onboard sensors and relative information between UAVs is a research hotspot. Aiming at the efficiency and accuracy problems...
Gespeichert in:
Veröffentlicht in: | International journal of distributed sensor networks 2022-01, Vol.18 (1), p.155014772110647 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Navigation plays an important role in the task execution of the micro-unmanned aerial vehicle (UAV) swarm. The Cooperative Navigation (CN) method that fuses the observation of onboard sensors and relative information between UAVs is a research hotspot. Aiming at the efficiency and accuracy problems of previous studies, this article proposes a hybrid-CN method for UAV swarm based on Factor Graph and Kalman filter. A global Factor Graph is used to combine Global Navigation Satellite System (GNSS) and ranging information to provide position estimations for modifying the distributed Kalman filter; distributed Kalman filter is established on each UAV to fuse inertial information and optimized position estimation to modify the navigation states. In order to provide time-consistent GNSS position information for the Factor Graph, a time synchronization filter is designed. The proposed method is tested and verified using standard Monte Carlo simulations, simulation results show that it can provide a more precise and efficient CN solution than traditional CN methods. |
---|---|
ISSN: | 1550-1329 1550-1477 |
DOI: | 10.1177/15501477211064758 |