Occurrence of Bensulfuron-Methyl Resistance and Target-Site Resistance Mechanisms in Ammannia auriculata Biotypes from Paddy Fields
Ammanniaauriculata is a troublesome broadleaf weed, widely distributed in the paddy fields of southern China. In this study, 10 biotypes of A. auriculata were sampled from Yangzhou City, China, where the paddy fields were seriously infested with A. auriculata, and their resistance levels to acetolac...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2022-07, Vol.11 (15), p.1926 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ammanniaauriculata is a troublesome broadleaf weed, widely distributed in the paddy fields of southern China. In this study, 10 biotypes of A. auriculata were sampled from Yangzhou City, China, where the paddy fields were seriously infested with A. auriculata, and their resistance levels to acetolactate synthase (ALS) inhibitor bensulfuron-methyl were determined. The whole-plant response assays showed that nine A. auriculata biotypes were highly resistant (from 16.4- to 183.1-fold) to bensulfuron-methyl in comparison with a susceptible YZ-S biotype, and only one YZ-6 biotype was susceptible. ALS gene sequencing revealed that three ALS gene copies existed in A. auriculata, and four different amino acid substitutions (Pro197-Leu, -Ala, -Ser, and -His) at site 197 in the AaALS1 or 2 genes were found in eight resistant biotypes. In addition, no amino acid mutations in three ALS genes were found in the YZ-3 biotype. These results suggested that target-site mutations or non-target-site resistance mechanisms were involved in tested resistant A. auriculata biotypes. Finally, a cleaved amplified polymorphic sequence (CAPS) marker was identified to rapidly detect the Pro197 mutations in A. auriculata. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants11151926 |