A simulation and experiment study on phase transformations of Ti-6Al-4V in wire laser additive manufacturing
[Display omitted] •Simulation of additively manufactured Ti-6Al-4V phase transformation and experimental validations.•Four stages of β→α/α′, which are (I) β→αgb/αC, (II) β→αB, (III) β→α′ and (IV) β→αB and α′→αB+β.•α′elimination during wire laser additive manufacturing. The additively manufactured Ti...
Gespeichert in:
Veröffentlicht in: | Materials & design 2021-09, Vol.207, p.109843, Article 109843 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Simulation of additively manufactured Ti-6Al-4V phase transformation and experimental validations.•Four stages of β→α/α′, which are (I) β→αgb/αC, (II) β→αB, (III) β→α′ and (IV) β→αB and α′→αB+β.•α′elimination during wire laser additive manufacturing.
The additively manufactured Ti-6Al-4V part suffers from undesirable α′ phase, which leads to a decrease of its plasticity. In this research, density-based constituent phase simulation method is applied to investigate the phase transformation of Ti-6Al-4V during wire laser additive manufacturing (WLAM). Single-layer and five-layer WLAM experiments are conducted to validate the accuracy of the simulation. The simulation results agree with the experimental results. By in-situ investigating the phase transformation during cooling, it is found that there exist four stages for β→α/α′, which are (I) β→αgb/αC, (II) β→αB, (III) β→α′ and (IV) β→αB and α′→αB+β. Increasing the temperature and decreasing the cooling rate help in narrowing or even eliminating the β→α′ stage, which finally leads to the decrease of α′ fraction or even avoid its formation. Compared with the laser power 2500 W case, the laser power 3000 W case gets more transformed αB without increasing α-lath thickness. The simulation shows promising prospects in predicting phase transformation, revealing underlying mechanisms and optimizing processing parameters. |
---|---|
ISSN: | 0264-1275 1873-4197 |
DOI: | 10.1016/j.matdes.2021.109843 |