Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber
In this paper, the combination of using an anti-resonant hollow-core fiber (ARHCF), working as a gas absorption cell, and an inexpensive, commercially available watch quartz tuning fork (QTF), acting as a detector in the quartz-enhanced photothermal spectroscopy (QEPTS) sensor configuration is demon...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (15), p.5504 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the combination of using an anti-resonant hollow-core fiber (ARHCF), working as a gas absorption cell, and an inexpensive, commercially available watch quartz tuning fork (QTF), acting as a detector in the quartz-enhanced photothermal spectroscopy (QEPTS) sensor configuration is demonstrated. The proof-of-concept experiment involved the detection of methane (CH4) at 1651 nm (6057 cm−1). The advantage of the high QTF Q-factor combined with a specially designed low-noise amplifier and additional wavelength modulation spectroscopy with the second harmonic (2f-WMS) method of signal analysis, resulted in achieving a normalized noise-equivalent absorption (NNEA) at the level of 1.34 × 10−10 and 2.04 × 10−11 W cm−1 Hz−1/2 for 1 and 100 s of integration time, respectively. Results obtained in that relatively non-complex sensor setup show great potential for further development of cost-optimized and miniaturized gas detectors, taking advantage of the combination of ARHCF-based absorption cells and QTF-aided spectroscopic signal retrieval methods. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22155504 |