Gut-Expressed Vitellogenin Facilitates the Movement of a Plant Virus across the Midgut Wall in Its Insect Vector
Many viral pathogens of global importance to plant and animal health are persistently transmitted by insect vectors. Midgut of insects forms the first major barrier that these viruses encounter during their entry into the vectors. However, the vector ligand(s) involved in the movement of plant virus...
Gespeichert in:
Veröffentlicht in: | mSystems 2021-06, Vol.6 (3), p.e0058121-e0058121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many viral pathogens of global importance to plant and animal health are persistently transmitted by insect vectors. Midgut of insects forms the first major barrier that these viruses encounter during their entry into the vectors. However, the vector ligand(s) involved in the movement of plant viruses across the midgut barrier remains largely uncharacterized. Begomoviruses, many of which are disease agents of some major crops worldwide, are persistently transmitted by whiteflies (Bemisia tabaci). Here, in order to identify whitefly midgut proteins that interact with a devastating begomovirus, tomato yellow leaf curl virus (TYLCV), we performed midgut-specific TYLCV coat protein (CP) immunoprecipitation followed by high-throughput mass spectrometry proteomic analysis. We find that vitellogenin (Vg), a critical insect reproductive protein that has been considered to be synthesized by the fat body, is also synthesized by and interacts with TYLCV CP in the whitefly midgut. TYLCV appears to be internalized into midgut epithelial cells as a complex with Vg through endocytosis. Virus-containing vesicles then deliver the virus-Vg complexes to early endosomes for intracellular transport. Systematic silencing of Vg or midgut-specific immune blocking of Vg inhibited virus movement across the midgut wall and decreased viral acquisition and transmission by whitefly. Our findings show that a functional Vg protein is synthesized in the midgut of an insect and suggest a novel Vg mechanism that facilitates virus movement across the midgut barrier of its insect vector. IMPORTANCE An essential step in the life cycle of many viruses is transmission to a new host by insect vectors, and one critical step in the transmission of persistently transmitted viruses is overcoming the midgut barrier to enter vectors and complete their cycle. Most viruses enter vector midgut epithelial cells via specific interaction between viral structural proteins and vector cell surface receptor complexes. Tomato yellow leaf curl virus (TYLCV) is persistently transmitted by the whitefly Bemisia tabaci between host plants. Here, we find that TYLCV coat protein interacts with vitellogenin (Vg) in the whitefly midgut. This interaction is required for the movement of the virus crossing the midgut wall and thus facilitates viral acquisition and transmission by whitefly. This study reveals a novel mechanism of virus overcoming the insect midgut barrier and provides new insights into the function of Vg beyo |
---|---|
ISSN: | 2379-5077 2379-5077 |
DOI: | 10.1128/mSystems.00581-21 |