Feynman integral reductions by intersection theory with orthogonal bases and closed formulae

A bstract We present a prescription for choosing orthogonal bases of differential n -forms belonging to quadratic twisted period integrals, with respect to the intersection number inner product. To evaluate these inner products, we additionally propose a new closed formula for intersection numbers b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2024-09, Vol.2024 (9), p.18-28, Article 18
Hauptverfasser: Crisanti, Giulio, Smith, Sid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We present a prescription for choosing orthogonal bases of differential n -forms belonging to quadratic twisted period integrals, with respect to the intersection number inner product. To evaluate these inner products, we additionally propose a new closed formula for intersection numbers beyond d log forms. These findings allow us to systematically construct orthonormal bases between twisted period integrals of this type. In the context of Feynman integrals, this represents all diagrams at one-loop.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP09(2024)018