Feynman integral reductions by intersection theory with orthogonal bases and closed formulae
A bstract We present a prescription for choosing orthogonal bases of differential n -forms belonging to quadratic twisted period integrals, with respect to the intersection number inner product. To evaluate these inner products, we additionally propose a new closed formula for intersection numbers b...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2024-09, Vol.2024 (9), p.18-28, Article 18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We present a prescription for choosing orthogonal bases of differential
n
-forms belonging to quadratic twisted period integrals, with respect to the intersection number inner product. To evaluate these inner products, we additionally propose a new closed formula for intersection numbers beyond d log forms. These findings allow us to systematically construct orthonormal bases between twisted period integrals of this type. In the context of Feynman integrals, this represents all diagrams at one-loop. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP09(2024)018 |