Real-time chiral dynamics at finite temperature from quantum simulation
A bstract In this study, we explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED, the massive Schwinger model. By introducing a chiral chemical potential μ 5 through a quench process, we drive the system out of equilibrium and analyz...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2024-10, Vol.2024 (10), p.31-18, Article 31 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
In this study, we explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED, the massive Schwinger model. By introducing a chiral chemical potential
μ
5
through a quench process, we drive the system out of equilibrium and analyze the induced vector currents and their evolution over time. The Hamiltonian is modified to include the time-dependent chiral chemical potential, thus allowing the investigation of the CME within a quantum computing framework. We employ the quantum imaginary time evolution (QITE) algorithm to study the thermal states, and utilize the Suzuki-Trotter decomposition for the real-time evolution. This study provides insights into the quantum simulation capabilities for modeling the CME and offers a pathway for studying chiral dynamics in low-dimensional quantum field theories. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP10(2024)031 |