Real-time chiral dynamics at finite temperature from quantum simulation

A bstract In this study, we explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED, the massive Schwinger model. By introducing a chiral chemical potential μ 5 through a quench process, we drive the system out of equilibrium and analyz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2024-10, Vol.2024 (10), p.31-18, Article 31
Hauptverfasser: Ikeda, Kazuki, Kang, Zhong-Bo, Kharzeev, Dmitri E., Qian, Wenyang, Zhao, Fanyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract In this study, we explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED, the massive Schwinger model. By introducing a chiral chemical potential μ 5 through a quench process, we drive the system out of equilibrium and analyze the induced vector currents and their evolution over time. The Hamiltonian is modified to include the time-dependent chiral chemical potential, thus allowing the investigation of the CME within a quantum computing framework. We employ the quantum imaginary time evolution (QITE) algorithm to study the thermal states, and utilize the Suzuki-Trotter decomposition for the real-time evolution. This study provides insights into the quantum simulation capabilities for modeling the CME and offers a pathway for studying chiral dynamics in low-dimensional quantum field theories.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2024)031