Simulation of a Cellular Energy System including hierarchies and neighborhoods

The massive use of small energy resources and storage units causes a transition from a traditionally centralized to a decentralized energy system. To structure and coordinate the emerging changes in the energy system, the concept of Energy Cells (ECs) was developed. Several ECs can be combined to fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy Informatics 2022-12, Vol.5 (Suppl 4), p.51-21, Article 51
Hauptverfasser: Dengler, Gabriel, Bazan, Peter, German, Reinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The massive use of small energy resources and storage units causes a transition from a traditionally centralized to a decentralized energy system. To structure and coordinate the emerging changes in the energy system, the concept of Energy Cells (ECs) was developed. Several ECs can be combined to form a hierarchically superordinate EC. These hierarchically superordinate ECs can in turn be combined and thus form a complex hierarchy. An EC encapsulates coherent parts of an energy system and can communicate as well as exchange energy with other ECs at a different or the same level. It follows the idea of local balance of energy provision and demand. A network of ECs forms a Cellular Energy System (CES). In this paper, we develop a concept for modeling and simulating a CES. We accomplish this by beginning with atomic components like consumers, producers, and storage units and aggregating them with Hierarchical Controllers (HCs). Such a hierarchically structured energy system is part of various proposals. However, we are able to add neighborhood relations by introducing Local Controllers (LCs). This is more realistic and also opens many degrees of freedom for control strategies in such a system. Following the recursive structure of the CES itself, we define recursive functions for visiting the CES architecture and realizing various control strategies. We evaluate our approach in a series of partially randomized scenarios, showing notable differences in the performance of the CES regarding different control strategies in a larger example. We also provide a theoretical analysis of the computational complexity of the suggested approach.
ISSN:2520-8942
2520-8942
DOI:10.1186/s42162-022-00243-2