Challenges for the Implantation of Symbiotic Nanostructured Medical Devices

We discuss the perspectives of designing implantable medical devices that have the criterion of being symbiotic. Our starting point was whether the implanted device is intended to have any two-way (“duplex”) communication of energy or materials with the body. Such duplex communication extends the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-04, Vol.10 (8), p.2923
Hauptverfasser: Alcaraz, Jean-Pierre, Menassol, Gauthier, Penven, Géraldine, Thélu, Jacques, El Ichi, Sarra, Zebda, Abdelkader, Cinquin, Philippe, Martin, Donald K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the perspectives of designing implantable medical devices that have the criterion of being symbiotic. Our starting point was whether the implanted device is intended to have any two-way (“duplex”) communication of energy or materials with the body. Such duplex communication extends the existing concepts of a biomaterial and biocompatibility to include the notion that it is important to consider the intended functional use of the implanted medical device. This demands a biomimetic approach to design functional symbiotic implantable medical devices that can be more efficient in mimicking what is happening at the molecular and cellular levels to create stable interfaces that allow for the unfettered exchanges of molecules between an implanted device and a body. Such a duplex level of communication is considered to be a necessary characteristic of symbiotic implanted medical devices that are designed to function for long periods of time inside the body to restore and assist the function of the body. We illustrate these perspectives with experience gained from implanting functional enzymatic biofuel cells.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10082923