Large-scale wet-spinning of highly electroconductive MXene fibers

Ti 3 C 2 T x MXene is an emerging class of two-dimensional nanomaterials with exceptional electroconductivity and electrochemical properties, and is promising in the manufacturing of multifunctional macroscopic materials and nanomaterials. Herein, we develop a straightforward, continuously controlle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-06, Vol.11 (1), p.2825-2825, Article 2825
Hauptverfasser: Eom, Wonsik, Shin, Hwansoo, Ambade, Rohan B., Lee, Sang Hoon, Lee, Ki Hyun, Kang, Dong Jun, Han, Tae Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ti 3 C 2 T x MXene is an emerging class of two-dimensional nanomaterials with exceptional electroconductivity and electrochemical properties, and is promising in the manufacturing of multifunctional macroscopic materials and nanomaterials. Herein, we develop a straightforward, continuously controlled, additive/binder-free method to fabricate pure MXene fibers via a large-scale wet-spinning assembly. Our MXene sheets (with an average lateral size of 5.11 μm 2 ) are highly concentrated in water and do not form aggregates or undergo phase separation. Introducing ammonium ions during the coagulation process successfully assembles MXene sheets into flexible, meter-long fibers with very high electrical conductivity (7,713 S cm −1 ). The fabricated MXene fibers are comprehensively integrated by using them in electrical wires to switch on a light-emitting diode light and transmit electrical signals to earphones to demonstrate their application in electrical devices. Our wet-spinning strategy provides an approach for continuous mass production of MXene fibers for high-performance, next-generation, and wearable electronic devices. Large-scale production of fibers from two dimensional materials opens a pathway to promising applications. Here the authors report meter-long MXene fibers with high electrical conductivity that are fabricated via continuous wet spinning and demonstrated in electrical wires.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16671-1