A Novel Longitudinal Control Method Integrating Driving Style and Slope Prediction for High-Efficiency HD Vehicles
Developing high-precision vehicle longitudinal control technology guided by ecological driving represents a highly promising yet challenging endeavor. It necessitates the fulfillment of the driver’s operational intentions, precise speed control, and reduced fuel consumption. In light of this challen...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-11, Vol.13 (21), p.11968 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing high-precision vehicle longitudinal control technology guided by ecological driving represents a highly promising yet challenging endeavor. It necessitates the fulfillment of the driver’s operational intentions, precise speed control, and reduced fuel consumption. In light of this challenge, this study presents a novel vehicle longitudinal control model that integrates real-time driving style analysis and road slope prediction. First, it utilizes spectral clustering based on Bi-LSTM automatic encoders to identify driver driving styles. Next, it examines the driving environment and predicts the current slope of the vehicle. Additionally, a fuzzy controller is designed to optimize control performance, adapt to various driving styles and slopes, and achieve better fuel efficiency. The research results indicate that the DS-MPC control model developed in this paper can effectively distinguish various driving modes and has high speed control accuracy while saving 3.27% of fuel. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app132111968 |