Research Progress of Nano Copper Lubricant Additives on Engineering Tribology

Nanoparticles have as characteristics super sliding, extreme pressure, self-healing, etc., which can improve the friction reduction and anti-wear performance of sliding components, when used as lubricating oil additives. Nano-copper particles have a good synergistic effect with other antifriction ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-12, Vol.11 (12), p.2006
Hauptverfasser: Guo, Junde, Zhao, Yingxiang, Sun, Biao, Wang, Puchao, Wang, Zhijie, Dong, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoparticles have as characteristics super sliding, extreme pressure, self-healing, etc., which can improve the friction reduction and anti-wear performance of sliding components, when used as lubricating oil additives. Nano-copper particles have a good synergistic effect with other antifriction agents, anti-wear agents, antioxidants and grease additives because of their low shear strength and grain boundary slip effect, showing a better anti-friction and anti-wear effect. However, nanoparticles are prone to conglomerate, and this causes a bottleneck in the application of dispersant for nano-copper in a lubricating oil system. The regulation of nanosized effect and surface properties has great engineering significance in compensating for the precision in manufacturing accuracy. This paper comprehensively reviews the tribological research progress of nano-copper as a lubricant additive, which provides a reference to the application of nano-copper particles as lubricating oil additives on engineering tribology.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11122006