MoO₃-Doped MnCo₂O₄ Microspheres Consisting of Nanosheets: An Inexpensive Nanostructured Catalyst to Hydrolyze Ammonia Borane for Hydrogen Generation

Production of hydrogen by catalytically hydrolyzing ammonia borane (AB) has attracted extensive attention in the field of catalysis and energy. However, it is still a challenge to develop a both inexpensive and active catalyst for AB hydrolysis. In this work, we designed a series of MoO₃-doped MnCo₂...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2018-12, Vol.9 (1), p.21
Hauptverfasser: Lu, Dongsheng, Feng, Yufa, Ding, Zitian, Liao, Jinyun, Zhang, Xibin, Liu, Hui-Ru, Li, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Production of hydrogen by catalytically hydrolyzing ammonia borane (AB) has attracted extensive attention in the field of catalysis and energy. However, it is still a challenge to develop a both inexpensive and active catalyst for AB hydrolysis. In this work, we designed a series of MoO₃-doped MnCo₂O₄ (x) catalysts, which were fabricated by a hydrothermal process. The morphology, crystalline structure, and chemical components of the catalysts were systematically analyzed. The catalytic behavior of the catalyst in AB hydrolysis was investigated. Among these catalysts, MoO₃-doped MnCo₂O₄ (0.10) microspheres composed of nanosheets exhibited the highest catalytic activity. The apparent activation energy is 34.24 kJ mol and the corresponding turnover frequency is 26.4 mol min mol . Taking into consideration the low cost and high performance, the MoO₃-doped MnCo₂O₄ (0.10) microspheres composed of nanosheets represent a promising catalyst to hydrolyze AB for hydrogen production.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano9010021