The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis

Higher-order cognition emerges through the flexible interactions of large-scale brain networks, an aspect of temporal coordination that may be impaired in psychosis. Here, we map the dynamic functional architecture of the cerebral cortex in healthy young adults, leveraging this atlas of transient ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-03, Vol.9 (1), p.1157-15, Article 1157
Hauptverfasser: Reinen, Jenna M., Chén, Oliver Y., Hutchison, R. Matthew, Yeo, B. T. Thomas, Anderson, Kevin M., Sabuncu, Mert R., Öngür, Dost, Roffman, Joshua L., Smoller, Jordan W., Baker, Justin T., Holmes, Avram J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher-order cognition emerges through the flexible interactions of large-scale brain networks, an aspect of temporal coordination that may be impaired in psychosis. Here, we map the dynamic functional architecture of the cerebral cortex in healthy young adults, leveraging this atlas of transient network configurations (states), to identify state- and network-specific disruptions in patients with schizophrenia and psychotic bipolar disorder. We demonstrate that dynamic connectivity profiles are reliable within participants, and can act as a fingerprint, identifying specific individuals within a larger group. Patients with psychotic illness exhibit intermittent disruptions within cortical networks previously associated with the disease, and the individual connectivity profiles within specific brain states predict the presence of active psychotic symptoms. Taken together, these results provide evidence for a reconfigurable dynamic architecture in the general population and suggest that prior reports of network disruptions in psychosis may reflect symptom-relevant transient abnormalities, rather than a time-invariant global deficit. Temporal changes in brain dynamics are linked with cognitive abilities, but neither their stability nor relationship to psychosis is clear. Here, authors describe the dynamic neural architecture in healthy controls and patients with psychosis and find that they are stable over time and can predict psychotic symptoms.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03462-y