Switchable and Dual-Tunable Multilayered Terahertz Absorber Based on Patterned Graphene and Vanadium Dioxide

In this paper, a switchable and dual-tunable terahertz absorber based on patterned graphene and vanadium dioxide is proposed and analyzed. By controlling the Fermi level of graphene and the temperature of vanadium dioxide, the device’s function can be switched and its absorbing properties can be tun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2021-05, Vol.12 (6), p.619
Hauptverfasser: Liu, Hongyao, Wang, Panpan, Wu, Jiali, Yan, Xin, Yuan, Xueguang, Zhang, Yangan, Zhang, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a switchable and dual-tunable terahertz absorber based on patterned graphene and vanadium dioxide is proposed and analyzed. By controlling the Fermi level of graphene and the temperature of vanadium dioxide, the device’s function can be switched and its absorbing properties can be tuned. When the vanadium dioxide is in an insulator state, the device can be switched from near-total reflection (>97%) to ultra-broadband absorption (4.5–10.61 THz) as the Fermi level of graphene changes from 0 to 0.8 eV. When the vanadium dioxide is changed to a metal state, the device can act as a single-band absorber (when the Fermi level of graphene is 0 eV) and a dual-band absorber with peaks of 4.16 THz and 7.3 THz (when the Fermi level of graphene is 0.8 eV). Additionally, the absorber is polarization-insensitive and can maintain a stable high-absorption performance within a 55° incidence angle. The multilayered structure shows great potential for switchable and tunable high-performance terahertz devices.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12060619