Zinc-Cobalt Oxide Thin Films: High Curie Temperature Studied by Electron Magnetic Resonance

The material with a high Curie temperature of cobalt-doped zinc oxide embedded with silver-nanoparticle thin films was studied by electron magnetic resonance. The nanoparticles were synthesized by the homogeneous nucleation technique. Thin films were produced with the pulsed laser deposition method....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-12, Vol.27 (23), p.8500
Hauptverfasser: Cieniek, Bogumił, Stefaniuk, Ireneusz, Virt, Ihor, Gamernyk, Roman V, Rogalska, Iwona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The material with a high Curie temperature of cobalt-doped zinc oxide embedded with silver-nanoparticle thin films was studied by electron magnetic resonance. The nanoparticles were synthesized by the homogeneous nucleation technique. Thin films were produced with the pulsed laser deposition method. The main aim of this work was to investigate the effect of Ag nanoparticles on the magnetic properties of the films. Simultaneously, the coexisting Ag and Ag centers in zinc oxide structures are shown. A discussion of the signal seen in the low field was conducted. To analyze the temperature dependence of the line parameters, the theory described by Becker was used. The implementation of silver nanoparticles causes a significant shift of the line, and the ferromagnetic properties occur in a wide temperature range with an estimated Curie temperature above 500 K.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27238500