Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest

Aerosol particles form in the atmosphere via the clustering of certain atmospheric vapors. After growing into larger particles by the condensation of low-volatility gases, they can affect the Earth's climate by scattering light and acting as cloud condensation nuclei (CCN). Observations of low-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2022-02, Vol.22 (4), p.2237-2254
Hauptverfasser: Jokinen, Tuija, Lehtipalo, Katrianne, Thakur, Roseline Cutting, Ylivinkka, Ilona, Neitola, Kimmo, Sarnela, Nina, Laitinen, Totti, Kulmala, Markku, Petäjä, Tuukka, Sipilä, Mikko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aerosol particles form in the atmosphere via the clustering of certain atmospheric vapors. After growing into larger particles by the condensation of low-volatility gases, they can affect the Earth's climate by scattering light and acting as cloud condensation nuclei (CCN). Observations of low-volatility aerosol precursor gases have been reported around the world, but longer-term measurement series and any Arctic data sets showing seasonal variation are close to nonexistent. Here, we present ∼7 months of aerosol precursor gas measurements performed with a nitrate-based chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer. We deployed our measurements ∼150 km north of the Arctic Circle at the SMEAR I (Station for Measuring Ecosystem–Atmosphere Relations) continental Finnish subarctic field station, located in the Värriö strict nature reserve. We report concentration measurements of the most common compounds related to new particle formation (NPF): sulfuric acid (SA), methane sulfonic acid (MSA), iodic acid (IA) and the total concentration of highly oxygenated organic molecules (HOMs). At this remote measurement site, SA originates from both anthropogenic and biological sources and has a clear diurnal cycle but no significant seasonal variation. MSA shows a more distinct seasonal cycle, with concentrations peaking in the summer. Of the measured compounds, IA concentrations are the most stable throughout the measurement period, except in April during which time the concentration of IA is significantly higher than during the rest of the year. Otherwise, IA has almost identical daily maximum concentrations in spring, summer and autumn, and on NPF event or non-event days. HOMs are abundant during the summer months and low in the autumn months. Due to their low autumn concentrations and high correlation with ambient air temperature, we suggest that most HOMs are products of biogenic emissions, most probably monoterpene oxidation products. NPF events at SMEAR I happen under relatively low-temperature (1–8 ∘C) conditions, with a fast temperature rise in the early morning hours as well as lower and decreasing relative humidity (RH, 55 % vs. 80 %) during NPF days compared with non-event days. NPF days have clearly higher global irradiance values (∼450 m−2 vs. ∼200 m−2) and about 10 ppbv higher ozone concentrations than non-event days. During NPF days, we have, on average, higher SA concentrations, peaking at noon; higher MS
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-22-2237-2022