Resonant algebras in Chern-Simons model of topological insulators

This paper explores the possibility of using Maxwell algebra and its generalizations called resonant algebras for the unified description of topological insulators. We offer the natural action construction, which includes the relativistic Wen-Zee and other terms, with adjustable coupling constants....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2019-08, Vol.795, p.516-520
Hauptverfasser: Durka, Remigiusz, Kowalski-Glikman, Jerzy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper explores the possibility of using Maxwell algebra and its generalizations called resonant algebras for the unified description of topological insulators. We offer the natural action construction, which includes the relativistic Wen-Zee and other terms, with adjustable coupling constants. By gauging all available resonant algebras formed by Lorentz, translational and Maxwell generators {Ja,Pa,Za} we present six Chern-Simons Lagrangians with various terms content accounting for different aspects of the topological insulators. Additionally, we provide complementary actions for another invariant metric form, which might turn out useful in some generalized (2+1) gravity models.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2019.06.058