Use of Electrical Impedance Tomography (EIT) to Estimate Tidal Volume in Anaesthetized Horses Undergoing Elective Surgery
This study explores the application of electric impedance tomography (EIT) to estimate tidal volume (VT) by measuring impedance change per breath (∆Zbreath). Seventeen healthy horses were anaesthetised and mechanically ventilated for elective procedures requiring dorsal recumbency. Spirometric VT (V...
Gespeichert in:
Veröffentlicht in: | Animals (Basel) 2021-05, Vol.11 (5), p.1350 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study explores the application of electric impedance tomography (EIT) to estimate tidal volume (VT) by measuring impedance change per breath (∆Zbreath). Seventeen healthy horses were anaesthetised and mechanically ventilated for elective procedures requiring dorsal recumbency. Spirometric VT (VTSPIRO) and ∆Zbreath were recorded periodically; up to six times throughout anaesthesia. Part 1 assessed these variables at incremental delivered VT of 10, 12 and 15 mL/kg. Part 2 estimated VT (VTEIT) in litres from ∆Zbreath at three additional measurement points using a line of best fit obtained from Part 1. During part 2, VT was adjusted to maintain end-tidal carbon dioxide between 45–55 mmHg. Linear regression determined the correlation between VTSPIRO and ∆Zbreath (part 1). Estimated VTEIT was assessed for agreement with measured VTSPIRO using Bland Altman analysis (part 2). Marked variability in slope and intercepts was observed across horses. Strong positive correlation between ∆Zbreath and VTSPIRO was found in each horse (R2 0.9–0.99). The agreement between VTEIT and VTSPIRO was good with bias (LOA) of 0.26 (−0.36–0.88) L. These results suggest that, in anaesthetised horses, EIT can be used to monitor and estimate VT after establishing the individual relationship between these variables. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani11051350 |