Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries
Exploiting solid electrolyte (SE) materials with high ionic conductivity, good interfacial compatibility, and conformal contact with electrodes is essential for solid-state sodium metal batteries (SSBs). Here we report a crystalline Na 5 SmSi 4 O 12 SE which features high room-temperature ionic cond...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-10, Vol.14 (1), p.6501-6501, Article 6501 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploiting solid electrolyte (SE) materials with high ionic conductivity, good interfacial compatibility, and conformal contact with electrodes is essential for solid-state sodium metal batteries (SSBs). Here we report a crystalline Na
5
SmSi
4
O
12
SE which features high room-temperature ionic conductivity of 2.9 × 10
−3
S cm
−1
and a low activation energy of 0.15 eV. All-solid-state symmetric cell with Na
5
SmSi
4
O
12
delivers excellent cycling life over 800 h at 0.15 mA h cm
−2
and a high critical current density of 1.4 mA cm
−2
. Such excellent electrochemical performance is attributed to an electrochemically induced in-situ crystalline-to-amorphous (CTA) transformation propagating from the interface to the bulk during repeated deposition and stripping of sodium, which leads to faster ionic transport and superior interfacial properties. Impressively, the Na|Na
5
SmSi
4
O
12
|Na
3
V
2
(PO
4
)
3
sodium metal batteries achieve a remarkable cycling performance over 4000 cycles (6 months) with no capacity loss. These results not only identify Na
5
SmSi
4
O
12
as a promising SE but also emphasize the potential of the CTA transition as a promising mechanism towards long-lasting SSBs.
Solid-state sodium metal batteries require solid electrolytes with high ionic conductivity and optimal electrode compatibility. Here, the authors introduce the Na
5
SmSi
4
O
12
solid electrolyte with a crystalline-to-amorphous transformation, achieving 4000 cycles lifetime without capacity decline. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-42308-0 |