Impact of Structural Parameters on the Collision Characteristics and Coefficient of Restitution of Soybean Particles on Harvester’s Cleaning Screens

Inadequate parameter design of the cleaning device in soybean combine harvesters leads to elevated levels of machine harvesting losses and impurity rates. To provide fundamental data for the optimization of structural parameters of soybean cleaning sieves, it is of great significance to study the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) 2024-07, Vol.14 (7), p.1201
Hauptverfasser: Guo, Xiaohu, Wang, Shiguo, Chen, Shuren, Li, Bin, Tang, Zhong, Hu, Yifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inadequate parameter design of the cleaning device in soybean combine harvesters leads to elevated levels of machine harvesting losses and impurity rates. To provide fundamental data for the optimization of structural parameters of soybean cleaning sieves, it is of great significance to study the collision and bouncing characteristics of soybeans on the cleaning sieve surface and the impact of parameters on the coefficient of restitution (COR). The current study designed a collision platform, using soybeans at the harvest stage as the research subject. The experimental factors included drop height, wall inclination angle, wall movement speed, and wall material. Through single-factor experiments and orthogonal experiments, the effects of different collision parameters on the rebound trajectory and COR of soybeans were investigated. This study focuses on soybeans at the harvest stage as the test subjects. Experiments were conducted on a collision platform and recorded with a high-speed camera to capture the three-dimensional motion trajectories of the soybeans using the principle of specular reflection. Through single-factor experiments, the jumping characteristics of the soybeans on sieve surfaces with different motion characteristics were analyzed. The impact of drop height (400–650 mm), wall inclination angle (8–13°), wall movement speed (0.6–1.1 m/s), and wall material (stainless steel plates and polyurethane plates) on the coefficient of restitution (COR) was calculated and clarified. Multi-factor orthogonal experiments were conducted to determine the significance order of the different factors affecting the COR. Three-dimensional models of the soybeans and the collision platform were constructed using SolidWorks software, and the collision between the soybeans and the cleaning wall was simulated using EDEM software. The micro-forces and energy transfer during the soybean collision were analyzed. The results indicated that the COR of soybeans decreases as the drop height increases, but increases with wall inclination angle and wall movement speed. Additionally, the COR is higher when the soybeans collide with stainless steel plates compared to polyurethane plates. The order of influence of the four factors on the COR were: wall material > wall inclination angle > wall speed > drop height. This study provides important reference value for the efficient and low-loss design of cleaning devices.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture14071201